перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
Расчет согласующего усилителя
Здесь в качестве усилительного элемента предполагается использовать быстродействующий операционный усилитель, включенный по схеме преобразователя напряжение – ток (известной так же в качестве усилителя с комплексной крутизной передачи). Схема согласующего усилителя представлена на рис.4.1 (функциональная группа СУС). Резистор R5, отбирающий ток, предназначен для обеспечения обратной связи на положительный входной зажим.
Значение сопротивления R5, определяется исходя из следующего условия:
,
где Rн – сопротивление нагрузки усилителя.
Сопротивлением нагрузки усилителя является входное сопротивление прямого модулятора и равно параллельному соединению сопротивлений делителя Rд (из двух параллельно соединённых сопротивлений в цепи базы Rб’ и Rб’’) и входного сопротивления транзистора Rвхэ.
Сопротивление входа транзистора определяется следующим соотношением:
Сопротивление делителя:
Тогда сопротивление нагрузки усилителя равно:
Таким образом, сопротивление R5:
Амплитудное значение падения напряжения на сопротивлении R5:
Требуемый от схемы коэффициент усиления равен отношению амплитуды выходного напряжения (напряжение ?UR5) к амплитуде входного напряжения. Поскольку на вход согласующего усилителя сигнал поступает с преобразователя кода, собранного на микросхемах серии КМДП с уровнями логического нуля и единицы соответственно 0.7 и 5 В, то амплитуда входного сигнала составит ?Uвх=5-0.7=4.3 В.
Тогда коэффициент усиления схемы составит:
Обычно номиналы резисторов R1, R3 и R4 выбираются одинаковыми, при этом каждый из них должен превышать сопротивление R5 не менее чем в 20 раз.
Примем в соответствии с этим условием следующие значения сопротивлений:
Сопротивление R2 задаёт коэффициент усиления схемы и определяется следующим образом:
В настоящее время создан ряд быстродействующих операционных усилителей (ОУ). Наилучшими качествами с точки зрения автора обладает операционный усилитель КР140УД11. Данный прибор выполнен по планарно-эпитаксиальной технологии с изолированным p-n переходом, имеет скорость нарастания выходного напряжения 50 В/мкс и частоту единичного усиления 15 МГц. Кроме того, за счёт оригинальной схемы ОУ отличается высокой стабильностью параметров во всём диапазоне питающих напряжений от ±5 до ±16 В.
Быстродействующие усилители менее устойчивы по сравнению с универсальными ОУ, поэтому для предотвращения генерации с схеме необходимо уменьшить паразитную ёмкость между выходом ОУ и его инвертирующим входом. Для уменьшения указанной ёмкости применяют внешние цепи коррекции, состав которых зависит от задачи, которую решает операционный усилитель. В нашем случае будем использовать стандартную схему частотной коррекции, предназначенную для увеличения скорости нарастания выходного напряжения.
скачать бесплатно Передающее устройство одноволоконной
Содержание дипломной работы
Тема проекта:
СОДЕРЖАНИЕ
Аннотация
1. Введение
2. Принципы построения и основные волоконнооптических систем передачи в городских телефонных сетях.
Линейные коды в волоконнооптических
Источники излучения волоконнооптических систем передачи
Детекторы волоконнооптических
Оптические кабели в волоконнооптических системах передачи
К недостаткам волоконнооптической технологии следует отнести:
Особенности одноволоконных оптических
Сравнительная характеристика принципов построения одноволоконных оптических систем передачи.
Виды модуляции оптических колебаний.
Оптический передатчик прямой модуляции
Оптический приемник
3. Выбор и обоснование структурной
Волоконнооптическая система передачи
Волоконнооптическая система передачи
Волоконнооптическая система передачи с одним
3.2.Окончательный выбор структурной схемы передатчика.
Структурная схема оптического передатчика.
Общие соображения по расчёту принципиальной схемы устройства
Расчёт мощности излучения передатчика и выбор типа излучателя
Расчёт выходного каскада
Расчет согласующего усилителя
Расчет устройства автоматической регулировки уровня оптического сигнала
4.7 Расчёт источника питания одноволоконной оптической системы передачи
Расчёт диодных выпрямителей
Расчет трансформатора
4.8 Расчёт ёмкостей в схеме оптического передающего устройства
4.8.2 Расчёт разделительной ёмкости
Расчёт ёмкостей фильтров
4.9 Номиналы элементов схемы
5.1 Выбор материала печатной платы
5.2 Размещение элементов и разработка топологии печатной платы
6. Расчет надежности волоконнооптического передающего устройства
7. Технико-экономический расчет
7.1 Анализ рынка
7.2 Определение себестоимости одноволоконного оптического передатчика
7.2.1 Затраты на приобретение материалов
7.2.2 Затраты на покупные изделия и полуфабрикаты
7.2.3 Основная заработная плата производственных рабочих
7.2.4 Калькуляция себестоимости блока волокон-нооптического передатчика
7.3 Определение уровня качества изделия
7.4 Определение цены изделия
7.4.1 Нижняя граница цены изделия
7.4.2 Верхняя граница цены изделия
7.5. Определение минимального объема производства
8. Мероприятия по охране труда
8.1 Лазерная безопасность
Технико-гигиеническая оценка лазерных изделий
Классы опасности лазерного излучения
Гигиеническое нормирование лазерного излучения
8.2 Требования безопасности при эксплуатации лазерных изделий
Классификация условий и характера труда
8.3 Мероприятия по производственной санитарии
Опасные и вредные воздействия
Биологическое действие инфракрасного излучения на организм человека.
8.4 Требование к освещению и расчёт освещённости
8.5 Мероприятия по улучшению условий труда
8.6 Мероприятия по пожарной безопасности
8.7 Мероприятия по молниезащите здания
9. Литература