перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
1. ОБЩИЙ РАЗДЕЛ
1.1 Характеристика схемы
Гибридные интегральные микросхемы (ГИМ) представляют собой микросхемы, которые содержат кроме элементов, неразрывно связанных с подложкой, компоненты, которые могут быть выделены как самостоятельное изделие.
К ГИМ относятся: микросхемы с высокой точностью элементов и возможностью их подстройки, микросхемы значительной мощности, микросхемы частного применения, микросхемы СВЧ - диапазона.
Цифровые функциональные узлы, содержащие элементы памяти (триггеры), получили название последовательных узлов. К ним относят триггеры, счетчики, делители, распределители импульсов. Эти функциональные узлы входят в состав многих серий ИС.
Цифровую микросхему как функциональный узел характеризуют системой сигналов, которые целесообразно разделить на информационные (X1...Xm — входные, Y1...Yn — выходные) и управляющие (V1...Vk). Каждая схема в соответствии со своим функциональным предназначением выполняет определенные операции над входными сигналами (переменными), так что выходные сигналы (переменные) представляют собой результат этих операций Yj=F(X1,...,Xm). Операторами F могут быть как простейшие логические преобразования, так и сложные многофункциональные преобразования, имеющие, например, место в БИС памяти, микропроцессоре и др.
Сигналы управления определяют вид операции, режим работы схемы, обеспечивают синхронизацию, установку начального состояния, коммутируют входы и выходы, и т.д.
Данная схема представляет собой импульсное устройство — RST - триггер.
От функциональных возможностей триггеров и режимов управления их работой зависят характеристики регистров, счетчиков и других узлов.
Простейшая схема триггера содержит два входа, на которые поступают управляющие сигналы, и два выхода с разным уровнем напряжений на них: низким и высоким.
При изменении комбинации сигналов на входах триггер скачком переходит из одного состояния в другое, когда изменяются уровни его входных напряжений. Если один из уровней входного напряжения триггера принять за логическую единицу, а другой — за логический ноль, то, подавая определенную комбинацию электрических сигналов на входы триггера, его можно использовать для хранения и обработки двоичной информации, деления и счета числа импульсов и т.д.
В настоящее время широкое распространение в импульсной и цифровой технике получили интегральные триггерные устройства, реализованные на основе логических схем И-НЕ и ИЛИ-НЕ.
Асинхронный Т-триггер имеет один информационный вход и переключается фронтом, либо срезом поступающих на его вход импульсов. Его называют счетным, так как число его переключений соответствует числу поступающих на его вход импульсов.
На практике широко применяются различные варианты схем асинхронных Т-триггеров с установочными R и S входами (RST-триггер) для установки триггера в состояние «0» или «1»./4/
Триггером RST-типа (счетный триггер с раздельной установкой) называют устройство с двумя устойчивыми состояниями и тремя входами (R,S и T), сочетающее в себе свойства триггеров RS- и T-типов. Входы Sd и Rd у данного триггера являются установочными, а вход T - счетным.
Схема может находиться в двух устойчивых состояниях, каждое из которых определяется комбинацией сигналов на входах триггера. Работа триггера RST-типа отражена в таблице 1. Структурная схема RST-триггера представлена на рисунке 1.
скачать бесплатно Микроэлектроника
Содержание дипломной работы
Микроэлектроника
1. ОБЩИЙ РАЗДЕЛ
6.4.3. Гибридные или сложные шлюзы
6.4.4. Рейтинг
6.5. Архитектуры брандмауэра
6.5.1. Хост
6.5.2. Экранированный хост
6.5.3. Экранированная подсеть
6.6. Интранет
1.2.2 Схема технологического процесса изготовления
2.1 Исходные данные к расчету
2.2 Выбор материалов и их характеристика
2.2.1 Выбор материалы подложки
2.2.2 Выбор резистивного материала
2.2.3 Выбор материала для обкладок конденсаторов и материала диэлектрика
2.2.4 Выбор материала для проводников
2.2.5 Выбор материала для защиты
2.3 Выбор и обоснование метода создания заданной конфигурации элементов
2.4 Выбор компонентов
2.5 Разработка схемы соединений
2.6 Выбор корпуса
3.1 Методика расчета пассивных элементов 3.1.1 Методика расчета тонкопленочных резисторов
3.1.2 Методика расчета тонкопленочных конденсаторов
3.2.1 Программа расчета тонкопленочных резисторов
3.2.2 Программа расчета тонкопленочных конденсаторов
3.3 Расчет площади подложки
3.4 Оценка теплового режима
ВЫВОДЫ
СПИСОК ЛИТЕРАТУРЫ